Professor Gidaspow's research interests are in the areas of mathematical modeling and analysis as applied to various energy conversion processes. His research involves the studies of the hydrodynamic theories of fluidization and multiphase flow, nanoparticle transport, desiccant air conditioning, and fuel cells. Currently his research is focused in the following areas:
Multiphase Flow and Fluidization
Dr. Gidaspow's work in multiphase flow and fluidization culminated in the 1994 publication of his textbook on the subject, Multiphase Flow and Fluidization. It shows how multiphase flow equations provide practical solutions to industrial fluidization problems. Written to advance progress in the emerging science of multiphase flow, this book clarifies many physical concepts, such as particulate viscosity and solids pressure. It is the first book to apply kinetic theory to the flow of particulates.
Recently, we demonstrated using a kinetic theory based particle image velocity meter (PIV) that there are two kinds of turbulences in fluidization:
random oscillations of individual particles, measured by the classical granular temperature and
turbulence caused by the motion of clusters of particles, measured by the average particle normal Reynolds stress.
These two kinds of turbulence give rise to two kinds of mixing, mixing on the level of a particle and mixing on the level of cluster or bubble. To compute the granular temperature, it must be programmed into the computational fluid dynamics (CFD) codes. The code itself computes the Reynolds stresses, similar to the calculation of single-phase turbulence by direct numerical computation.
Figures 1 and 2 [PowerPoint slide] illustrate our computations and two-phase turbulence measurements.
Heat and Mass Transfer
Professor Gidaspow, working with IIT's Department of Mechanical and Aerospace Engineering, developed and analyzed a complete solar desiccant airconditioning system. In 1985, he received the AIChE Heat Transfer and Energy Conversion Division's Donald Q. Kern Award and presented his lecture, "Hydrodynamics of Fluidization and Heat Transfer: Supercomputer Modeling," at the AIChE's Heat Transfer Conference, later published in Applied Mechanics Review, 39:123 (1986). |